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By Frank M. Hamaker

SUMMARY

A solution for the two-dimensional flow of an inviscid perfect gas

over a circular cylinder at infinite Mach number is obtained by numerical

methods of analysis° Nonisentropie conditions of curved shock waves and

vortieity are included in the solution. The analysis is divided into two

distinct regions_ the subsonic region which is analyzed by the relaxation

method of Southwell and the supersonic region which was treated by the

method of characteristics. Both these methods of analysis are inappli-

cable on the sonic line which is therefore considered separately. The

shapes of the sonic line and the shock wave are obtained by iteration

techniques.

The striking result of the solution is the strong curvature of the

sonic line and of the other lines of constant Mach number. Because of

this the influence of the supersonic flow on the sonic line is negligible.

On comparison with Newtonian flow methods_ it is found that the approxi-

make methods show a larger variation of surface pressure than is given

by the present solution.

INTRODUCTION

Calculation of the flow over a blunt leading edge is a problem of

considerable difficulty. The flow is subsonic as well as supersonic so

that more than one method of analysis must be used. Because of the

detached shock wave and the several distinct regions of flow there is

the further difficulty of undetermined boundaries. Finally the entire

problem is nonlinear especially in hypersonic flow because of the large

entropy changes that occur. Hence_ it appears that direct numerical

integration of the equations of motion for this type of problem is

desirable.

Several schemes employing numerical method have been developed.

Belotserkovsky (ref. i) has derived a method based on stripwise division

of the flow field and the development of special integral equations which

are then solved numerically. The method is applied to a circular cylinder
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for several finite Machnumbers. In the work of Garabedian (ref. 2) the
equation is integrated in the realm of complex variables so that the
usually elliptic-type differential equation becomeshyperbolic; hence_
a method of characteristics maybe used. The reason for the approach is
to avoid certain difficulties of instabilities. Van Dyke (ref. 3) has
devised a method of integrating from the shock wave directly which
appears to have satisfactorily minimized instability difficulties. In
both the latter methods the shock-wave shape is given and the body shape
is produced as one of the results of the solution. A method similar to
that used in reference 3 is given by Mangler and Evans (ref. 4).

In the present work the numerical method used is the relaxation
method developed by Southwell and his group (ref. 5). This method is
particularly effective when the differential equation being solved is
an elliptical type as it is in the case of subsonic flow. Maccoll and
Codd (ref. 6) calculated the subsonic portion of the flow over a wedge
of large included angle using greatly simplified assumptions for the
sonic line position. Drebinger (ref. 7) solved a similar problem with
more accurate conditions for the sonic line obtaining a better answer
but with more extensive computation. The use of the relaxation method,
however, is questionable when applied to supersonic flow because the
differential equation is not elliptic but hyperbolic and, in addition_
the construction of suitable boundary condition is unsatisfactory.
Mitchell (ref. 8) calculated the entire flow field for the supersonic
flow over a square leading-edge plate where the necessary boundary con-
ditions were obtained from experimental data; without such experimental
aids it is doubtful whether the relaxation solution of the supersonic
region could be obtained.

In this report the flow about a circular cylinder is calculated
where the relaxation method is used for the subsonic portion of the flow
and the supersonic part of the flow is computedby the well established
method of characteristics. The free-stream Machnumberof the flow is
chosen as infinite.

SYMBOLS

c

CD

Cp

d

F

G

velocity of sound

pressure drag coefficient

local pressure coefficient

characteristic length

functional relation for gas density variable

constant representing free-stream mass-flow rate
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i

Z

Z

M

n

P

P

q

Q

r

¥

distance along sonic line

d

Math number

coordinate distance normal to streamline

n

d

fluid pressure

P

(Ps)r

fluid velocity

residual in relaxation process

radius in polar coordinates

r

d-

R

s

gas constant

distance along streamline

s

d

S

u,v

u,v

w

x,y

entropy of gas

velocity components in the x and y coordinates_ respectively, or in

the r and a coordinates_ respectively

coordinate variables obtained by conformal transformation of r,_

variables

complex variable, u + iv

Cartesian coordinates

complex variable, re ie
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7

8

@w

ratio of specific heats of gas

relaxation net spacing

angle between the sonic line and streamline

distance from sonic line to chosen starting line for solution by
method of characteristics

angle between streamlines and axis of symmetry

angle between shock wave and axis of symmetry

compliment of Mach angle, _ - sin-

v

P

P

X

X

¢

streamline variable

gas density

P

(Pslr

angular variable in polar coordinates

_ A
transformed density variable, O 2

X

(Xslr

stream function

m

G

Subscripts

co

r

free-stream conditions

functions of the streamlines only

(The subscript is omitted when the streamline passes through the

point where the shock is normal°)

s stagnation conditions



x,y derivatives with respect to subscript evaluated at the sonic
line

sonic conditions

identification of net point variables

METHODOFSOLUTION

Statement of the Problem

The problem to be considered is the two-dimensional flow of an
inviscid gas over a circular cylinder at the limiting velocity of infi-
nite Machnumber. The fluid is taken to be a perfect gas with y = 1.4.
This is at somevariance with the suspected state of affairs at the high
temperature generated in actual flight where _ is smaller and other
thermal imperfections exist, but the uncertainty of the actual state makes
the choice of gas properties difficult.

Outline of the Entire Solution

The complete numerical process is difficult to describe precisely.
Muchof it cannot be given as a step-by-step procedure as, for example,
there are places where iteration takes place and, in addition_ judgment
plays an important part in the direction of the operations. In what
follows, a general survey of the method of solution is given and at the
end the more specific steps of the solution will be presented.

The first part of the solution
is the subsonic region. In order
to set up the relaxation procedure
it is necessary to have given the
conditions around a closed boundary
of the field being solved. In this
case the boundaries are the body
surface, the axis of symmetry, the
shock wave, and the sonic line as
shownin the sketch. An initial
guess as to the positions of the
shock wave and the sonic line must
be made, and the more educated the
guess, the easier and shorter will
be the subsequent work. All possi-
ble information should be used to

Streamline

q

obtain the initial estimate including clues from experimental results_

if available. For these initial boundaries_ the process of relaxation

will give a solution of the subsonic flow field. This solution must be
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compatible with the conditions along the shock wave and sonic line. For

example, the flow angle at the shock wave can be determined from the

streamlines of the relaxation solution and also from the shock-wave angle.

A new shock-wave angle distribution can then be calculated from the relax-

ation solution and a new shock-wave shape obtained by integration. The

testing for compatibility of the sonic line is more difficult as it

involves such things as streamline curvature and density gradients, but

the principle is the same. With these improved boundaries the interior

can be corrected. Before the sonic line can be regarded as accurately

established, however, it is necessary to make the sonic line and the

neighboring subsonic region compatible with the initial supersonic region.

The Mach number gradients along a streamline, for example, should not be

discontinuous through the sonic line. This step is necessary because

there may be several different sonic lines compatible to the condition

in the subsonic region, but not all of them compatible to the ensuing

supersonic region. Beyond a certain point the disturbances in the super-

sonic region cannot affect the subsonic or transonic region, and the

characteristic calculations can proceed as far as desired into the super-

sonic region.

Subsonic Region

The equations for rotational flow of a compressible fluid are given

in many references (see, e.g., ref. 9). In the subsonic region the nat-

ural variable to use is the stream function which is defined so as to

satisfy the continuity equation as follows:

m = rou , m = -ov (l)
8m _r

Here the polar coordinates r and M are used since they are consistent

with the shape of the body in this problem. This is then substituted

into the vorticity equation producing after some transformation the

required equation:

(2)

A relation between the density, p, and the stream function will be needed

and can be obtained from the equation for the mass-flow rate.

(pq)_= (pu)_+ (pv) _= + (3)
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The method of relaxation is applied by Drebinger and Mitchell in

somewhat different manners (refs. 7 and 8, respectively). The present

procedure combines features of both approaches. Equation (2) is trans-

formed slightly by the introduction of a new variable.

l

x = p- _ (4)

giving the result,

+-r @ +r 2 ¢ - ¢ +----r_r

1 _2_x_ rp _s = 0
r 2 _ey + RX _-_

Since entropy is constant along a streamline, the variation of the

fluid properties along a streamline is regarded as isentropic, and for

the rth streamline, the Bernoulli's equation can be expressed as

; (P )r(X  r2 (6)

where subscript s refers to stagnation conditions. Note that (Ps)r and

(Xs) r are constant along a given streamline, that is, they are functions of

only. The stagnation sound velocity, es, on the other hand, is a con-
stant for the entire flow. If equations (6) and (3) are combined and the

pressure terms are eliminated by the isentropie gas law, an expression

relating the stream function to the density variable can be obtained:

F l
7-i ×'[ - L(Xs)rJ }= \'g--rr_+ _A _ (7)

Following Mitchell, a new variable is introduced defined by

G (8)
vr - (Ps)rCsd

where G is a free-stream mass-flow constant and d is a characteristic

length. It is easily seen that vr is a function only of the stream
function variable. Equations (5) and (7) are now made dimensionless by

introduction of the variables

X -- --_ r = -- _ =- (9)

(×s)r ' P- (Ps)r ' d ' G



There is then obtained from equations (5) and (7):

log Vr _ i _ log Writ _ _Sb_ _¥ + _2 bm _. + _Vr_ b_ = o

(io)

2 _)q)/ J
(ii)

For numerical purposes equation (I0) can be put in more convenient form

by use of the relation derived from the shock-wave equation (23) I

Vr Ps Sr-S
.... e R
V (Ps)r

where the omission of the subscript r refers to the values for the

streamline originating from the normal shock. Then by means of such
transformations as

log vr _ log(vr/V ) i _S _

and elimination of _ by the isentropic gas law, equation (i0) becomes

+

L\a J + +
i ] i _S

7Vr2_T27+i)",. _ R _ = 0

(13)

The corresponding equation in Mitchell's paper (ref. 8) is apparently in

error as it omits the first part of the last term. It may have been

assumed by Mitchell that the omitted term could be neglected for low

Mach numbers, but no explanation or indication was given in the paper.

iBecause of the interrelated nature of the parts of this problem,

referencing to subsequent equations could not readily be avoided.
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It is convenient to work the relaxation method in a Cartesian net;

hence_ the first step is to transform the polar net to a rectangular one
by the conformal transformation

w = u + iv = log z = log _ + i@ (14)

With these transformations, u = log ? and v = _, equations (13) and (Ii)

become, respectively,

_u 2 + _v 2 _ + _v2/ + + + YVr2_(27+i) R _

(15)

L\ uj+ (16)

Consider now a uniform net of

points over the coordinate system

covering the flow region with a

uniform spacing of _ between the

points, as shown in the sketch.

Now, if the values of the variables

are used at, for example, points

4, O, and 2, difference formulas

can be obtained which will approxi-

mate the derivatives at point O.

These difference formulas can be

used to write equations (15)

and (16) in the following forms:

2
! I

o _ 4

,__][_

,4

f _j(_j -9o) + (_-O[(J;"l-J]3) 2+ (JJ2-Jj4)2] +

j=l

=q

(17)

F(Xo ) 7-1 Vro 2 [(_l__S)2: + (_-_)_] (is)
2 ro262

There will be a set of these equations at every point in the net; and

together with the given values of @ along the boundaries, it is theo-

retically possible but obviously impractical to solve all these equations

simultaneously. The relaxation method is an effective approach for find-

ing a solution to a set of equations like this. The first step is to

assume values of the unknown variables, _, at all points. Then at each

point the density variable _ is calculated from equation (16) which
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enables the value Q, which is called the residue, to be calculated from
equation (17). It can be seen that the required solution has been

achieved if Q = 0 at all the points simultaneously. Since a correct

initial guess of the stream function is obviously quite unlikely_ the

problem becomes one of reducing the Q's to negligibly small amounts by

modification of the values of _ at all the points with equation (17)

as a guide. The means and techniques by which these modifications are

made form the substance of the relaxation method. The analogy from which

the method gets its name is that of an elastic net with _ being an

arbitrary displacement and Q the unbalanced force at each mode of the

net. The unbalanced forces may then be reduced by "relaxing" the dis-

placements. The amount of computation that can be saved by the use of

special techniques as well as systematic procedures is at times remark-

able and the reader is referred to papers already mentioned and especially

to more general works (refs. 5 and i0).

The shock wave.- When shock-wave equations are written for infinite

Mach number, it is necessary to use some reference point behind the shock

wave to avoid infinite quantities. The simplest choice is to refer to

the normal shock quantities. The shock-wave equations (ref. ii) then

become

2 cos @wsin @w
tan e = (19)

(7+1)-2 sin2ew

(7+1)2-47 sin2ew
M = (2o)

27( . 2T-l)sln ew
1

X = [ : sin2dw} (21)(xs) r 7

S-Sr 2

7-1 log sin 8w (22)

(Ps)r (Ps)r Sr-S ---9--2

Ps = p------_ : e R = (sin 8w) 7-z (23)

47 ]_.LPs (7_) 2 7- isin28
(24)

The quantities such as Ps and Os where the subscript r is omitted

refer to normal shock quantities which occur along the streamline, along

the axis of symmetry, and along the body. The first three equations are
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used to test the compatibility of the shock wave; the third and fourth
equations are needed in connection with the subsonic solution; and the
last equation is used to determine the shock-wave position in the charac-
teristic calculations of the supersonic region.

The other necessary condition is the determination of the stream
function along the shock wave. If the definition of the stream function
is applied to the free stream, there is obtained in polar coordinates

= p_%or sin (25)

where the subscript _ refers to free-stream conditions. Whenconverted
to dimensionless form, this equation becomes

p_q_ sin
T = (26)

(Ps)rCsVr

It is seen that for numerical purposes vr can be chosen arbitrarily_

the most convenient choice being the one related to the net spacing so

as to simplify the constants in equations (17) and (18). If the condi-

tions at the normal shock wave are used, then (ps) r = Ps, Vr = v = 5/d

and finally, when conditions for infinite Mach number are substituted, the

stream function is given by

1

= 5 y+l 4y T sin _ (27)

From equations (22), (23), and (27) and the given shape of the shock wave,

the values of (Sr-S)/R and Vr/V can be determined as a function of

and then (I/R)(8S/8_) can be found by numerical differentiation.

The sonic line.- From the definition of the stream function one can

readily derive the equation for _ along the sonic line:

84 _ (p.)rq.Sin N (28)
8z

where the asterisk refers to sonic quantities, N is the angle from the

streamline to the sonic line, and Z is the distance along the sonic

line. ;_en put into dimensionless form, equation (28) becomes

7+i

8T I q. O<_)r . i <_i)2(7-z)sin _ (29)"_ : v-_ C-_ sln _ ='_r --
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Twoother important relations are given by Drebinger in reference 7.
The first one gives the slope of the sonic line:

___
_s

tan _ : - _8 C. $S (30)

q _s 7R _n

Here streamline coordinates are used, s along the streamline and n

normal to it. In terms of the dimensionless variables evaluated at sonic
condition this becomes

tan _ = 7+1 (31)

___e_ _l_ 2(7-_) i _s
$_ _2J vrR _

where

-_ sd (32)

The other relation of Drebinger is given by

_-_ = cos T] _s (33)

It is seen from the above equations that the calculations of the

sonic-line properties depend very largely on the properties of the sur-

rounding flow field which makes computation of the sonic line difficult.

The sonic region is indeed the most difficult part of the entire solution.

Even the initially assumed sonic line is a troublesome problem. The

location of the sonic point on the present body was made on the assumption

that the flow direction on the body was the same as at the sonic point on

the shock wave. It turned out to be a very good guess. Some idea of the

shape of the sonic line can be obtained from equations (30) and (31) since

estimates of quantities in these equations can be made. An additional aid

in determining the sonic line is determining the sonic-line slope _ at

the shock wave which is known in terms of shock-wave properties and can

be calculated by a rather lengthy formula derived by Drebinger in refer-

ence 7. Equation (28) is important not only to obtain a boundary condi-

tion for the subsonic solution but also to determine the distances between

the shock wave and the body. It is obvious that the stream function

calculated from equation (28) and the one calculated from equation (27)

must be equal at the shock-wave sonic point. The location of this shock-

wave point requires a trial and error method of computation. Equa-

tions (31) and (32) are used to help estimate the initial sonic-line
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slope, _ and strewn angle, 0. _e first guess of the entropy function_

Vr, along the sonic line is liable to be quite crude at first since it

is an implicit variable in this calculation. Then the stream function

along the sonic line is found by integration of a suitable form of

equation (29). On comparison with the stre_m function on the assumed

shock wave_ the sonic line is then elongated or shortened as required,

and the variable vr is modified to be consistent with the expected

distribution of _ along the sonic line. The computation is repeated

until the necessary agreement is obtained. It is important that this

calculation be done accurately_ as errors can seriously disturb the

relaxation process for solving the subsonic region near the sonic line.

If_ for example_ the gradient of _ is too high along the sonic line,

then the flow would be an erroneous supersonic one.

The supersonic region.- As was mentioned previously, the relaxation

method has been used by Mitchell to extend the solution into the super-

sonic region. To make this extension it is necessary to assume some kind

of approximate boundary in the supersonic region. Such a procedure might

be adequate for low supersonic speeds, but at hypersonic speeds the large

entropy gradients make it practically impossible to find boundaries of

even moderate accuracy. Hence_ the well-known method of characteristics

is used for the present problem. The characteristic equation can be

written in many different forms, the one chosen here is given in

reference 12:

_-_ 7M2 de (34)
p = _2_!

where the variables are integrated along first and second families of

characteristic lines given by the equation

dn = ± tan B (35)
ds

where _ sin_ I i is the Mach angle. Because of the large entropy

gradients existing in the flow, a hodograph chart is not practical so

that the computation must progress as a step-by-step numerical integration

It is, of course, impossible to start the characteristic solution

right on the sonic line as then the coefficient in equation (34) is

infinite. Consequently it is necessary to locate some line in the super-

sonic region as a starting place. A means of doing this is given by

Holt (ref. 13); however, his equations were developed for potential flow

so to use his methods the equations must be rederived for rotational flow

This derivation is given in the appendix together with a summary of the

method of Holt for locating the starting line.
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Summary of the Procedure

i. The shock-wave shape is obtained by integration of an assumed

distribution of the shock-wave angle. When this shock wave is located

as indicated in the next step_ the stream function and entropy functions

can be calculated from equations (27), (22), and (23).

2. The shape of the sonic line is estimated with the aid of equa-

tions (30) and (33). The stream function along the sonic line is calcu-

lated from equation (29), and the sonic-line length is obtained by

matching the values of the stream function on the sonic line and on the

shock wave at their intersection.

3. The subsonic region is then solved by the method of relaxation.

The results of this solution can be used in steps i and 2 to improve the

shapes and positions of the shock waves and the sonic line, and the sub-

sonic region can be corrected to agree with the improved boundaries.

This is repeated until the boundaries and the subsonic solution are in

accord.

4. A starting line for the method of characteristics is located

away from the sonic line by the method developed by Holt. With equa-

tions (34) and (35) the characteristics solution is started on this line

with the body surface and the shock wave with equation (24) used as

boundary conditions.

5. When the supersonic solution for the Mach number gradients along

the body surface has proceeded sufficiently_ the streamlines, the shock

wave, or other suitable lines are examined for continuity through the

sonic line. The sonic point on the body is changed (usually by a very

small amount) to satisfy this requirement.

6. With the sonic line finally established the supersonic calcula-

tions are continued as far as is desired.

It should be emphasized again that these steps should be considered

more as a guide than a fixed set of rules. In step 5, for example, an
alternative method of handling the Mach number gradients is to determine

the flow angle distribution to give the required Mach number gradients and

use this information to relocate the sonic line.

Comments on the calculations.- The relaxation computations were

tedious but fairly straightforward except near the sonic line where,

because of the nature of the equation_ the relaxation process breaks down

and certain trial and error calculations are necessary. The shock wave

was easily corrected_ and the subsonic solution needed no more than a

small adjustment to correct for the new shock wave.
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As was mentioned previously, the location of the sonic line was the

most critical and difficult part of the entire calculation. The equations

that have been given to test the compatibility of the sonic line are

difficult to apply because the solution near the sonic line is a little

uncertain. However, to aid the establishment of the proper sonic line_

there is a striking property of the subsonic solution which could be

called a strong convergence effect. If the density variable X is

plotted for _ = constant, for example, there is observed a strong

tendency for the values to extrapolate toward the correct sonic line.

_Jhen this effect was discovered much computation time was saved. This

effect appears to be a hypersonic flow effect and seems to indicate the

high stability of such flows.

The starting line for the supersonic flow calculations was chosen as

the M : 1.016 line (Mach angle of 80 °) which made the change of Mach

number quite large with flow angle. This sensitivity has the advantage

of revealing errors in the sonic line very quickly. The location of the

sonic line on the body_ for instance_ was determined quite closely from

the difference in flow direction between the sonic point on the body and

the sonic point on the shock wave by making these directions compatible

with the Mach number gradients through the sonic line as determined from

the characteristic calculations.

RESULTS

The principle results showing the streamlines and the lines of con-

stant Mach number are given in figure I. The most noteworthy feature of

this figure is the strong curvature of the constant Mach number lines.

This curvature becomes more pronounced as one goes farther into the super-

sonic region. Figure 2 which shows the distribution of entropy and related

quantities along the shock wave is supplementary to figure i. In figure 3

the isoclines and isobars are shown; and in figure 4 the lines of constant

vorticity are given. Figure 5 shows the results of plotting the stream-

lines on the hodograph plane. It will be noticed that the streamlines

overlap in the vicinity of the sonic region which means that the hodograph

is not single-valued over the flow field. This could have been antici-

pated from the work of Goldstein and Lighthill (ref. 14).

In figure 6 the pressure coefficient along the body is shown together

with experimental results determined at a Mach number of 6.$6 (ref. 15).

Also shown for comparison are the pressure-coefficient curves determined

from the Newtonian flow theory

Cp = 2 sinee (36)

and from the equation
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Cp = 2 7 sin2e (37)

27-i 7-I7

which is the Newtonian flow theory modified to agree at the stagnation

point with the present solution. The third curve is the Newtonian impact

theory corrected for centrifugal effects by Grimminger's method (Case 5

in ref. 16).

The pressure drag coefficient for the fore part of the cylinder based

on projected area can be obtained from the solution by numerical integra-

tion. The table below shows the drag coefficient as given by different
theories.

Source CD

Present solution 1.26

Equation (36) 1.33

Equation (37) 1.23

Grimminger (ref. 16) 1.20

Penland (ref. 15) 1.27

For the purpose of continuing the supersonic solution along any

chosen subsequent body contour, figures 7 and 8 present the necessary data

along the coordinate lines _ = 80 ° and _ = 90 ° .

DISCUSSION

Because the method of calculation is composed of so many parts, some

of which are interrelated and some of which are not, the isolation of the

sources of errors is difficult. The part of most concern is probably the

relaxation solution. As in all methods in which the differentials are

replaced by difference equations, there is an error introduced by these

approximations depending upon the net size. The net size used in this

problem is equivalent to an angular increment of 2.5 ° and is based on

previous experience. As a check on the errors involved, a portion of the

flow field near the sonic point of the shock wave was recalculated with

a net size of one-half that of the complete solution. The differences

in the stream function between the two solutions were less than 0.2 per-

cent, indicating that the net size chosen is about optimum for the amount
of work that is involved.

Errors in the subsonic solution also have an important effect on

shock-wave shape. This effect is revealed primarily in the shock-wave

standoff distance, that is, the distance between the shock wave and the

stagnation point. For this reason, it is of interest to compare the

standoff distance obtained in the present solution with that obtained by



17

others. In figure 9, the ratio of standoff distance to cylinder radius

is plotted as a function of I/M_ 2. The present value of 0.372 for infi-

nite Mach number appears to be consistent with the values for Mach numbers

of 3, 4, and 5 obtained by Belotserkovsky in reference i. However, the

present value is 6.5 percent less than that obtained by Garabedian in

reference 2 (0.398 at infinite Mach number) and 3.9 percent less than that

obtained by Van Dyke in unpublished results using the method of refer-

ence 3 (0.387 at infinite Mach number). Thus, there are some differences

in the standoff distances given by the various methods which are as yet

unresolved. During the course of the present computations_ however, it

was found that the subsonic flow sufficiently removed from the shock wave

is little affected by small changes in the shock-wave shape. This finding

would indicate that a small error in the shock-wave shape does not have a

noticeable effect on the flow on or near the body surface.

The most striking feature of the flow field found in the present

results is the strong curvature of the constant Mach number lines. The

Mach number decreased not only in proceeding out from the body but also

when moving in from the shock wave. The former phenomenon is well known

and is a result of the rapid expansion of the flow caused by the curvature

of the body. The latter phenomenon seems to be specific to hypersonic

flow, and a discussion as to its cause in the supersonic region would be

instructive. In the application of the method of characteristics it was

found that an important effect of the strong entropy gradients is a pro-

nounced curvature of the streamline towards the direction of increasing

entropy which is toward the body. This means that the flow is curving

away from the shock wave and therefore the Mach number is increasing more

rapidly than the Mach number in the region closer to the body.

A significant result of the strong curvature of the lines of constant

Mach number is the small interaction between the supersonic and subsonic

flow regions. The limiting characteristic is the last characteristic in

the supersonic region that starts from the body and still touches the sonic

line. Between this limiting characteristic and the sonic line is a super-

sonic region where disturbances and flow changes can still feed back into

the subsonic region of flow. In the present problem this interaction

region is quite small indicating negligible interaction effect as was also

indicated during the course of the computation. It should be noted here

that this result is for a body that has no slope discontinuity. In the

case where the body has a sharp shoulder, such as a square-nosed body;

the situation may be quite different. It is suspected that the interaction

region in this case will have significant importance in the determination

of the shape of the sonic line.

The comparison with the data of Penland (ref. 15) for a circular

cylinder at M = 6.$6 shows differences as high as 12 percent. A good

part of these differences is, however, believed to be experimental error.
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The Newtonian flow theory overestimates the pressure near the stag-

nation point and underestimates the pressure at the 9 = 90 ° point. Since

the greatest part of the pressure drag is due to the region near the

stagnation point_ Newtonian flow overestimates the total-pressure drag.

When modification to Newtonian flow is made for centrifugal forces, as

in Grimminger's theory (ref. 16), the resulting correction is so large

that it gives the smallest pressure drag in spite of the high stagnation

pressure coefficient.

CONCLUDING REMARKS

A solution by numerical methods of the hypersonic flow at M =

of a perfect compressible inviscid fluid over a cylinder has been calcu-

lated. With this body, which has no slope discontinuity on its surface,

there is negligible interaction between the supersonic flow and the sub-

sonic flow near the body because of the strongly curved shape of the sonic

line. The method of analysis based on Newtonian flow is applicable to a

problem of this type only in that it shows the correct trends of pressures

along the body. The approximate methods show larger variation in pressure

than are given by the present solution.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif., Nov. 25_ 1958
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APPENDIX

HOLT'S METHOD OF SONIC-LINE ANALYSIS MODIFIED FOR

ROTATIONAL FLOW

The coordinate system used here is the same as that used by Holt;

namely_ the x axis coincides with the streamlines with the flow direc-

tion given by positive x_ and the origin is on the sonic line. The

starting equations are the same ones used by Holt except_ in this case_

they become

u v _ _S (rotation) (AI)
7R By

(u_- c2) _ + kay + + - _v 2c_ as : (continuity)

(A2)

c 2 : Y+12 c'2 Y-12 (u2 + v2) (energy) (A3)

The double Taylor expansion of the velocity components,

± (X2Uxx + + Y%yT) +u : c. + xu x + yUy + _ 2XyUxy . . .

1 (X2Vxx y2vyy )v : xv x + yVy + _ + 2XyVxy + + . .

(A_)

are substituted in equations (AI) through (A3). Here the notation ux

represents the derivative of u with respect to x evaluated at the

origin of this coordinate system. From the coefficients of the powers

of x and y, the following relations between the derivatives are found

on the sonic line.

c_ _s (AS)
vx - Uy - yR _y

Vy : 0 (A6)

Vyy : (y+l)uxUy (A7)

Ux _s

Vxy- Uxy :- R By (AS)
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R _y
(A9)

_+l (Ux2+Vx2) _ (y-l)_ (A!o)
Vxy : e-_- c.

With these expressions only the x derivatives of the velocity components

need be known to obtain the remaining derivatives.

The other important expression of Holt changed by the introduction of

entropy gradients is the sonic-line slope which is given by

dq : uxdx + uydy : 0

along sonic line giving

dy u_ -ux
tan _ - dx - Uy c. _S (All)

Vx yR By

The coefficient vx is evaluated from the streamline curvature

vx : . (AI2)

The method proposed by Holt for starting the supersonic solution is

essentially to establish a line of known Mach number greater than I by

extrapolation. This is done by fixing a line a normal distance _ from

the sonic line, and then the coordinates of a point on the line are found

by

x _ y
sin q cos : { (AI3)

The distance _ can be obtained from the expression

_2
- sec2_ (A14)

c 2

where

_ :_- sin- (AIS)
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If the terms of higher order than x and y are expanded and neglected_

equation (AI4) can be put into explicit form and can be expressed in

terms of the coefficients of equations (A4) as

_2

fu_yy (Al6)(7+i) + \c.y

If M is chosen close enough to i, _ can be made small enough to make

error negligible. The flow direction on the new line can then be deter-

mined from the flow direction on the sonic line with the aid of equa-

tions (A3) and (A4).
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